Hazardous Area Classification

Groups (Table 1)

	Electrical equipment intended for use in mines susceptible to firedamp
п	Electrical equipment intended for use in places with an explosive gas atmosphere other than mines susceptible to firedamp
Ш	Electrical equipment intended for use in places with an explosive dust atmosphere other than mines susceptible to firedamp

Categories (Table 2)

ATEX	Typical Zone
Cat.	Suitability
1G	Equip. suitable for zone 0
1D	Equip. suitable for zone 20
2G	Equip. suitable for zone 1
2D	Equip. suitable for zone 21
3G	Equip. suitable for zone 2
3D	Equip. suitable for zone 22

Hazardous Area Classification

Types of Protection (Table 3)

GAS Type of Protection	ATEX Code	Standard
General Requirements	_	EN 60079-0
Intrinsic Safety	Ex ia & ib*	EN 60079-11
Increased Safety	Ex e	EN 60079-7
Flameproof	Ex d	EN 60079-1
Pressurization	Ex p	EN 60079-2
Powder Filling	Ex q	EN 60079-5
Encapsulation	Ex ma & mb	EN 60079-18
Oil Immersion	Ex o	EN 60079-6
Type n	Ex n	EN 60079-15

*Ex ia means protection is guaranteed with a combination of two faults (suitable for zone 0, 1&2), while Ex ib means protection is guaranteed with only one fault (suitable for zone 1 & 2).

Gas group (Table 4-1)

IIA	Propane
IIB	Ethylene
IIC	Hydrogen/Acetylene

Dust group (Table 4-2)

IIIA	Combustible Flying
IIIB	None - conductive dust
IIIC	Conductive dust

Class of electrical component	Maximum surface temperature of electrical component (°c)	Ignition temperature of gas or vapor (°c)
T1	300 < - < 450	> 450
T2	200 < - < 300	>300
Т3	135 < - < 200	>200
T4	100 < - < 135	>135
T5	85 < - < 100	>100
Т6	< 85	>85

Temperature (Table 5-1)

The gas groups are devided in three categories and are determined according to the maximum experimental safe gap width and minimum ignition current required to ignite the gas (IIC < 20μ J, IIB < 60μ J and IIA < 180μ J). These values have been determined empirically and are valid under atmospheric conditions (between 0.8 bar and 1.1 bar). The category IIC with the maximum of ignition energy of less than 20 mj is the most critical, having highest risk of explosion. Tables can be consulted for the temperature and gas group categories of a particular substance (see table 5-2).

The temperature category and gas group should also be indicated on an explosion zone diagram of the plant according to the explosive gas or vapor likely to be present in the zone. This allows the selection of the correct form of protection; the temperature and gas group should also be clearly indicated on equipment approved for use in flammable atmospheres.

Hazardous Area Classification

Substance	Ignition temp. (°c)	Temp. class	Gas group
Acetone CH3COCH3 (2-propanone)	540	T1	IIA
Acetylene C2H2 (ethane)	305	T2	IIC
Acetic anhydride (CH3CO)2O	330	T2	IIA
Benzene C6H6	555	T1	IIA
Butane C4H10	365	T2	IIA
n-Butyl alcohol C4H9 (1-butanol)	340	T2	IIA
Benzene chloride C6H5CL	590	T1	IIA
Ethanol C2H5OH (ethyl alcohol)	425	T2	IIA
Ethyl acetate Ch3COOC2H5 460	T1	IIA	
Methanol CH3OH (methyl alcohol)	455	T1	IIA
Nitrobenzene C6H5NO2	430	T1	IIA
n-pentane C5H12	285	Т3	IIA
Propane C3H8	470	T1	IIA
Toluene C6H5CH3	535	T1	IIA
Hydrogen H2	560	T1	IIC
Carbon disulphide CS2	102	T5	IIC
Hydrogen sulphide H2S	270	Т3	IIB

Explosive characteristics of some products (Table 5-2)

Note:

There is no relationship between gas group and temperature class. For example, hydrogen belongs to the most dangerous gas group IIC with the lowest ignition energy, but is in the safest temperature class T1 for ignition temperatures above 450°c.